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Numerical simulation of developing and decaying 
two-dimensional turbulence 

By D.K.LILLY 
National Center for Atmospheric Research, Boulder, Colorado 

(Received 21 November 1969 and in revised form 20 July 1970) 

Two-dimensional isotropic turbulence is investigated in its development from an 
arbitrarily specified initial flow through its transformation into a statistically 
self-preserving decaying flow. Numerical simulation is the principal method of 
investigation. The early development is characterized by rapid growth of the 
mean squared vorticity gradient, and this growth is found to be predicted 
satisfactorily by the quasi-normal hypothesis. During the later states of decay 
the numerical results are found to be generally consistent with the predictions by 
Kraichnan, Leith and Batchelor of a k3 inertial range spectrum. The dimension- 
less constant of the spectrum is found to be near 2, about half the value found 
earlier for turbulence maintained by a constant forcing amplitude. The results 
are also consistent with Batchelor’s predictions of the time-dependent behaviour 
of certain quadratic moments: An inconsistency in those predictions is pointed 
out, however, which can be resolved by altering the inertial range spectrum by 
a logarithmic term, as suggested by Kraichnan. The most important two-point 
Eulerian correlation functions are exhibited. An investigation is made of the 
Gaussianity of the flow with results indicating a strong tendency toward inter- 
mittency in the enstrophy dissipation. 

1. Introduction 
The purpose of this paper is to describe the results of a series of numerical 

solutions of the Navier-Stokes equations which simulate the behaviour of 
developing and decaying two-dimensionally isotropic turbulence. The historical 
background of this work appears to be relatively short. Ogura (1952) studied the 
statistical properties of two-dimensional turbulence and (1958) applied some 
standard statistical methods to analysis of the large-scale atmosphere. He was 
evidently the first to notice the apparent k-S spectrum of large-scale energy, but 
did not offer any explanation for it. Kraichnan (1967) pointed out the possibility 
of two inertial ranges in two-dimensional turbulence, a lt-8 spectrum range in 
which energy propagates to larger scales, and a k-3 range in which enstrophy 
(defined as half the mean-squared vorticity) propagates to smaller scales. He 
hypothesized that both ranges would exist simultaneously in continuously driven 
turbulence. Leith (1968), who had been working along somewhat similar lines, 
developed a closure hypothesis for two-dimensional turbulence which was con- 
sistent with both of the predicted inertial ranges. In a previous paper (Lilly 1969, 
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subsequently designated I), Kraichnan’s hypothesis was shown to be consistent 
with the results of numerical simulation experiments designed to test it. 

The present work was originally intended to test predictions of Batchelor 
(1969) and R. W. Bray (1966, unpublished thesis, Cambridge University) re- 
garding the statistical behaviour of decaying two-dimensionally isotropic 
turbulent flow of large Reynolds number. After the major part of this work was 
completed it was noted that the early portions of the simulation solutions might 
be realistically interpreted in terms of earlier and simpler theories, and that 
agreement would constitute a partial check on the adequacy of the numerical 
methods employed. Some additional numerical experiments were then performed 
to clarify this point further. 

2. The development of two-dimensional turbulence 
For two-dimensional, incompressible, constant density and inviscid flow the 

Eulerian equations of motion and continuity can be replaced by an equation 
for c, the vertical component of vorticity, i.e. 

agat + U, aglaxi = 0, (1)  

u1 = - a+lax,, u2 = a$lax,, g = az$lax;. (2) 

where ui and 5 are related t o  a stream function $ by 

It is well known that (1) and ( 2 ) )  together with closed or infinite boundary 
conditions, require the existence of two fundamental quadratic invariants, the 
spatial mean kinetic energy, E ,  and the spatial mean enstrophy, x, where these 

~ 

are defined as 
(3) 

Of course all other functions of vorticity are similarly invariant. Orszag (private 
communication) has pointed out, however, that most of these functions are not 
invariant in a finite truncated Fourier mode representation of equations (1) and 
( 2 ) ,  nor are they so in any known finite difference scheme. Perhaps the simplest 
non-invariant quadratic form in two-dimensional flow is the mean-squared 
vorticity gradient, which in viscous flow is proportional to the rate of enstrophy 
dissipation. Batchelor (1969) noted that this quantity bears the same pivotal 
relationship to  two-dimensional turbulence that vorticity itself does in three 
dimensions. We therefore base our analysis of the development of turbulence in 
two dimensions on the predicted rate of inviscid growth of (a</:laxi)2. 

From (1)  we can derive a relation for the generation of mean squared vorticity 
gradient in the form 

(4) 

The sign of the right-hand side cannot in general be predicted, and if the flow is 
initially Gaussian it must vanish. Upon differentiating (4) once more with respect 
to time and substituting the equations of motion and vorticity one obtains 
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The terms on the right side of (5) can in principle be evaluated in the case of the 
quasi-normal hypothesis, the assumption that fourth-order moments of velocity 
components or derivatives are related to second-order moments as if the com- 
ponents had Gaussian statistics. Thus if a, b,  c and d are identified as velocity 
components or derivatives, the quasi-normality hypothesis predicts that 

- 
abcd = ab cd + ac bd + ad be. 

Although Ogura (1962) and Kraichnan (1962) have shown that a consistent 
application of quasi-normality ultimately leads to unrealizable flow statistics, 
it is known that the hypothesis produces currect predictions for a short time 
interval after initiation from a Gaussian flow. Applying the above to (5) leads to 
vanishing of the second term on the right and evaluation of the first as 

By substitution of (7) into (5) we obtain therefore 

A similar expression was derived by Reid (1955) for the generation of mean- 
squared gradient (in three dimensions) of a scalar uncorrelated with the velocity 
field. In that case the term corresponding to the last of (8) was found to vanish. 
When the scalar is a vorticity component, however, the term does not vanish. 
It can be formally evaluated as a double integral of a product of velocity corre- 
lation functions. An equivalent and somewhat more useful expression for our 
purposes can be obtained by use of an integral involving the energy spectrum. 
The following derivation of this integral is due to Orszag (private communication). 

Ogura (1962) and Kraichnan (1967) exhibited expressions for the rate of 
acceleration of the scalar energy spectrum for two-dimensional flow if the quasi- 
normal approximation and isotropy are assumed. Kraichnan (1970) has noted 
that his expression is too large by a factor ofn. A correct and convenient expression 
can be derived from Ogura's equation (14) by symmetrizing it with respect to 
the dummy variables of integration to obtain 

where 

The variables p ,  q and k are the magnitudes of a wave vector triad such that 
p + q + k = 0. E(k)  is the scalar energy spectrum for two-dimensional flow. 

Q2 = 2k2p2 + 2p2q2 + 2q2k2 -p4 - q4 - k4. (10) 

The rate of acceleration of mean-squared vorticity gradient is 
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Substitution of (9) into (1 1) leads to an integral expression which must be sym- 
metric with respect to the wave vector amplitudes p ,  q and k .  By interchanging 
the labels and re-arranging terms we make use of this symmetry t o  express the 
integral in a more convenient form, i.e. 

where 

We now proceed to evaluate the inner integral, I ( p ,  q) .  If x is defined as the 
cosine of the angle opposite k in the k ,  p ,  q triangle, the law of cosines specifies that 

k2 = $32 + q2 - 2pqx. 

ak = - ( p q p )  ax. 

(14) 

(15) 

By differentiation of (14), holding p and q constant, we also obtain 

By substitution of the above two expressions into (1 3) we replace the k integration 
by one over x and obtain 

where the limits on x correspond to the possible range of the angle opposite k ,  
from 0 to 7r. The integral is now evaluated by elementary methods, with the part 
corresponding to the second term in brackets vanishing identically, and the 
result written 

We now substitute (17) into (12), once again using the symmetry betweenp and q 
to eliminate the absolute value expression, with the result that 

(17) I (P ,Q)  = P2q2w+q2- I P ~ - P I I .  

We have tested the above prediction for one specific case by means of a special 
numerical simulation experiment in which the inviscid vorticity equation is 
integrated for 100 time steps from an initial condition chosen t o  have a flat 
truncated scalar energy spectrum, i.e. 

(19) 

The initial stream field is composed of an ensemble of Fourier modes, whose 
amplitudes are randomly chosen from a Gaussian population with zero average 
and variance corresponding to (19). The wave-number limits ko and k ,  are taken 
to be 1 and 4 respectively. The outer limit is chosen as the closest possible 
approach to a circle in finite wave vector space. Five independent realizations are 
developed, in order to allow formation of an ensemble average. 

The numerical methods utilized in obtaining the solutions are more fully 
described in I. Briefly, SL cyclically symmetric square area is divided into 64 x 64 

E(k)  = El = constant for k,  < k 6 lc, at time = 0. 
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mesh boxes and the equation of vorticity, discretized at the centre of each mesh 
box, is solved by finite difference methods. The energy- and enstrophy-conserving 
difference scheme introduced by Arakawa (1966) is used for the non-linear terms. 
Time integration is performed by use of the second-order Adams-Bashforth 
method. The solution of the Poisson equation necessary to obtain stream function 
and velocity components from the vorticity is accomplished by a non-iterative 
method utilizing fast Fourier transforms. 

FIGURE 1. Map of the vorticity field at  the initial time for one realization of the development 
experiment. The analysis is done by machine-coded linear interpolation from a mesh of 
64 x 64 data points. The mesh interval is shown by hatch marks along the boundaries. The 
contours are drawn at uniform but arbitrarily selected intervals. Solid contours enclose 
areas of positive vorticity, dotted contours negative. The zero line L the first solid contour. 
The field is cyclically symmetric across all boundaries. 

Figures 1 and 2 are maps of the vorticity field at the initial time and after 
100 time steps, respectively, for one of the five realizations. They show clearly 
the self-distorting nature of the flow which leads to a general increase in the 
vorticity gradient amplitude. Figure 3 shows the growth of (a[/axi)2 during the 
100 time steps of each of the five realizations. The ordinate and abscissa have 
been made dimensionless by scaling by Ic, and the enstrophy, which remains 
constant during each realization. The time step is chosen for convenience to be 
constant and uniform in all realizations. In all cases it lies within the minimum 
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requirements for computational stability. The curves are each labelled according 
to the value of enstrophy which characterizes the corresponding realization. 

The prediction of the quasi-normal theory at  initial time is obtained by sub- 
stituting (19) into (18)  and integrating the latter to obtain 

FIGURE 2. The vorticity field for the samc rcalieation after 100 time steps of integration of 
the inviscid vorticity equation. The vorticity maxima and minima remain essentially 
unchanged but tho moan squared vorticity gradient has obviously increased. 

Since enstrophy is a conservative quantity in this experiment it is useful to 
express the above result as a product of enstrophy and mean squared vorticity 
gradient, i.e. in the form of the first term in (8). After evaluating the appropriate 
integrals we obtain, in place of (ZO), 

If the initial trend of (i3c/i3xi)2 is nearly zero, as is expected with a sufficiently 
random initial flow field, (21)  predicts that that quantity will start to grow like 
the hyperbolic cosine. From inspection of figure 3 it is apparent that the pre- 
diction of (21) is at  least qualitatively fulfilled, although a rather large spread of 
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FIGURE 3. Mean-squared vorticity gradient plotted against time for 5 realizations of the 
development experiment. The ordinate and abscissa have been scaled by k,, the maximum 
scalar wave-number of the Fourier modes contained in the initial flow field, and the mean- 
squared vorticity, which remains constant during each realization. Values of F: ., 0.1568; 
x , 0-1284; +, 0.1064; 0, 0.0813; 0, 0.1070. 

c2=0.081 3 

0 
- 

(C”4 t 
FIGURE 4. The squared exponential growth rate for growth of squared vorticity gradient 
plotted against time for the 5 realizations shown on figure 3. The mean of the 5 and the 
quasi-normal prediction at the initial time instant are also shown. 
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amplitudes of S, (a[/:laxJ2, and their growth rates exists between the different 
realizations. 

To test the prediction more exactly the ratio (d2/dt2) (a</i3xi)2/lx(ac/i3x,)2 is 
computed and plotted as a function of time for the five realizations on figure 4. 
The mean of the five realizations is shown as the dashed line and the quasi-normal 
prediction from (21), 0.131, is shown as the dash-dotted line. The mean and the 
predicted values differ at the initial time by not much more than the standard 
deviation of the mean, so that the prediction is reasonably well confirmed a t  the 
time when it should have its greatest validity. As time progresses, the result 
diverges from the prediction of quasi-normality , with an early tendency for 
faster growth rates. Toward the end of the experiment most of the realizations 
show a tendency for levelling off or decrease of the exponential growth rates. If 
the experiment were continued indefinitely with the disturbing effects of trunca- 
tion and aliasing errors removed (they are negligible in the 100 step experiment), 
the ultimate result should be a two-dimensional equipartition spectrum, as 
described by Kraichnan (1967). At this point the mean-squared vorticity gradient 
would become constant but much larger than its value during the 100 step 
experiment. 

- -  

3. The decay experiments 
The initial stretching of the vorticity contours which leads to turbulent flow 

can be adequately described by inviscid dynamics. The later development of a 
complete statistical structure and its ultimate decay requires the introduction of 
viscous forces. The vorticity equation derived from the complete Navier-Stokes 
equations in two dimensions is 

where v is the coefficient of viscosity. For the decay experiments the initial flow 
field is produced by adding a forcing function to the right side of (22) for a limited 
number (less than 50) time steps, then turning it off and continuing the integration 
as if from an initially specified flow. The forcing function and the initial flow 
field resulting from it differ slightly from the initial flow described in the develop- 
ment experiments. The forcing function is constructed from a set of Fourier 
modes randomly chosen from a Gaussian population of amplitudes associated 
with wave vectors lying on the perimeter of a square in wave vector space. The 
half-width of the square is 8, so that the wave-number amplitudes of the modes 
comprising the initial flow condition lie between 8 and 8( 2)*. Figure 5 is a map of 
the stream function at the end of the forcing period for the realization later 
designated by R = 537. A map of the vorticity looks very similar to that of the 
stream function with the signs reversed, since the fields are nearly monochromatic. 

The upper curve in figure 6, labelled 'initial' shows the corresponding scalar 
energy spectrum. This spectrum, as with all others exhibited, is obtained by 
summing the squared amplitudes of the Fourier modes around boxes in wave 
vector space, rather than the circle integrals usually assumed in analytic theory. 
The motive for this procedure is mainly that of convenience, but there should be 
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no significant qualitative difference between the behaviour of the box-summed 
and circle-summed spectra. In  particular, a power-law distribution in one case 
translates to the same power law in the other. 

Initial conditions for the two other realizations to be described differ from the 
above in both the flow details, because of a different random choice of Fourier 
mode amplitudes in the forcing function, and in the total energy content, because 
of variation in the length of time the forcing function is allowed to operate. The 

x 
FIGURE 5 .  Stream function $ after 50 time steps of forcing. The decay experiment for the 

high Reynolds number case, R = 537, starts at this point. 

wavelength and amplitude of the forcing function are both arbitrarily set equal 
to unity and the viscosity coetlicient v = 2-5 x All quantities should be 
considered dimensionless and the only fundamental adjustable parameter is a 
Reynolds number, as defined below. 

The remaining curves in figure 6 each consist of energy spectra obtained by 
averaging between the 1000th and 1200th steps of time integration of (22 ) ,  
including 10-50 steps of initial forcing. The spectra are labelled according to the 
Reynolds number at  the 1100th time step, as defined by 

R = E ~ L / v ,  (23) 
where L = Etlr$. 

26-2 
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The quantity 7 is the viscous dissipation of enstrophy. Our identification of R as 
the Reynolds number depends on the fact that L is an appropriate macroscale 
in two-dimensional turbulence, analogous to in three dimensions, where E 

10-7 1 

FIGURE 6. Scalar energy spectrum corresponding to the stream field of figure 1, labelled 
‘ initial’. Energy spectra for three realizations, each averaged between the 1000th and 1200th 
time steps and labelled according to the Reynolds number defined by equation (23). 

is the energy dissipation. The spectrum function for the highest Reynolds number 
exhibits an extensive region of -- 3 slope that is consistent with Kraichnan’s, 
Leith’s and Batchelor’s predictions. The depression of the tail for the lower 
R cases is probably due to the viscous cut-off, while its slight enhancement for 
the high R case can be attributed to finite difference errors. The vertical lines are 
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the values of L-l and A i l ,  where A, is the nominal dissipation scale for two- 
dimensional turbulence, given by 

A, = (v3/7)" (24) 

Let us now assume that the scalar energy spectrum is adequately approximated 
by the power-law expression suggested by Batchelor, i.e. 

E ( k )  = /37%k3, k, < k < k,, ( 2 5 )  

where k, and k, are lower and upper wave-number limits, which may be functions 
of time, and p is a possibly universal constant. The total energy, enstrophy and 
enstrophy dissipation rate can then be described in terms of integrals of the 
scalar energy spectrum as 

Upon substitution of the spectrum of (25) into the f i s t  and third of these and 
integration over its nominal range, we find that kc and k, are related to L and A, by 

From figure 6 it is evident that L and A, are closely associated with the limits of 
the inertial range. 

The results of these experiments allow for an empirical determination of p, the 
dimensionless constant of (25 ) .  If we assume that each of the spectral amplitudes 
shown in figure 6 represents the kinetic energy contained in the scalar wave- 
number band of width Ak centred around scalar wave-number k, (25) can be 
solved for /3 as follows: 

For comparison with the analytic theories based on definition of spectra as circle 
integrals in phase space, (28) is evaluated with k replaced by lceff, the r.m.s. wave- 
number of the components going into the box averages. Under the assumption 
that energy is equally divided among all the possible components of the box 
average it is easily verified that keff = 1.13k, and this conversion factor is 
uniformly applied. Figure 7 shows time plots of p for the three computation 
experiments described above, based on evaluation of (28) a t  wave-number 6. 
Similar plots were also made a t  wave-numbers 10 and 16, with essentially similar 
results. The average value of p for the latter part of the time records is near 2.0. 
The calculations for forced turbulence, described in I, indicated values of /3 near 
4.0. The discrepancy is unexplained, although the present values might be con- 
sidered more reliable because of the greater range of the k3 spectrum associated 
with them. In  the next section we describe another possible explanation. 

Batchelor predicts the time-dependent behaviour of the principle quadratic 
parameters in decaying two-dimensional turbulence as 

- 

X = 4At-2, (29) 

and 7 = At-3, (30) 
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where A is a constant. Since the energy dissipation is proportional to enstrophy 
we may also write 

where E ,  is the energy which is trapped at the largest scales after development of 
an extensive kV3 spectrum. Figure 8 shows curves of these parameters against 

B = Em - vAt-1, (31) 

0 
0 10 20 30 40 50 60 

R=537 
L 1 I 1 I I 1 1 
0 10 20 30 40 50 60 70 80 90 

R=411 
I I I 1 I J 
0 20 40 60 80 100 120 140 

R = 305 
Dimensionless time 

FIGURE 7. The dimensionless spectrum function constant, p, calculated from the 
wave-number 6 energy amplitude for three Reynolds number experiments. 

time for the high Reynolds number case, together with expressions of the form of 
(29)-(31), but with an arbitrary time origin. The values of A and the time origin, 
say to,  are those which best satisfy 2(t  - to)2 8 = (t  - A = constant for the 
last few hundred time steps. It is then found that 1, = E + Avt-l also becomes 
essentially constant during that period. As shown on figure 8, to = -4.0 and 
B ,  = 0.0221 for this case. The constant A is found to be N 1250. From the figure 
it appears that the predictions of (29)-(31) are well verified by our results, but in 
the next section we point out an apparent inconsistency of these predictions. 

7 

4. The question of the ‘logarithmic correction terms’ 
Kraichnan pointed out that the enstrophy cascade in two-dimensional turbu- 

lence differs in an important respect from the analogous energy cascade in three 
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dimensions. In  two dimensions, as Reynolds number approaches infinity, the 
total enstrophy diverges logarithmically, with each octave adding an equal 
contribution. Kraichnan argued that in this circumstance the cascade inter- 
actions cannot be considered local in wave vector space and proposed that the 
k-3 spectrum should be modified by logarithmic correction terms. He also antici- 
pated that p would not likely be as universal a constant as that of the Kolmogoroff 

0.10 
0.08 

0.06 

0.04 

0.02 

0.004 

0.002 

0.001 

t + 4.0 

FIGURE 8. Average energy, E,  average enstrophy +F and average enstrophy dissipation, 79 
as functions of time for the high Reynolds number case. Batehelor’s theoretical predictions 
ar0 shown as the dashed power law lines. 

spectrum, but might depend on the nature of driving forces. Batchelor did not 
discuss’ this point, except to mention the logarithmic divergence of the total 
enstrophy with increasing R. It is clear, however, that this divergence leads to an 
inconsistency in Batchelor’s analysis. If we eliminate time from (29) and (30) and 
evaluate the remaining terms by substitution of (25) into (26) we find that 

A* = Zg/r$ = 2/31n (lcd/kc). (32) 

From (23), (24)) (27) and (30)’ however, the ratio k,/kcincreaseslike t*in the decay 
process, so evidently A cannot be constant. 

Although Kraichnan did not suggest a form for the logarithmic correction, in 
order to make Batchelor’s dimensional analysis valid it appears to be necessary 
to find one such that enstrophy approaches a constant as R + 00. One of the 
simplest such forms is 
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where y is another dimensionless constant. By substitution of this relation into 
(26) we find that total enstrophy is given by 

The other principal moments, total energy and enstrophy dissipation, are more 
difficult to evaluate in this case but remain convergent as k,/k, -+ co. The slope 
of the energy spectrum on log-log paper becomes everywhere steeper than - 3, 
with maximum steepness given by 

Since we now have bounded enstrophy, Batchelor’s constant becomes inde- 
pendent of R in the infinite limit, i.e. 

A3 = Pr/y at k,/k, = co. (36) 

Using a different argument Kraichnan (1970) has postulated a logarithmic 
correction term of the form 

E(k)  = /?q*k-3 [In (k/kc)]-*. 

The available resolution of the numerical solution described here is inadequate 
to test the validity of either of Kraichnan’s predictions or equation (33). There is 
some indication, however, of a slope somewhat steeper than - 3 in the inter- 
mediate Reynolds number spectrum in figure 6 at wave-numbers much lower 
than Ad l. 

5. Correlation functions 
The most important of the Eulerian correlation functions for two-dimensional 

isotropic turbulence appear to be the two-point longitudinal and transverse 
velocity correlations and the two-point isotropic vorticity correlation, defined 
respectively as 

(37) 

(38) 

f ( r )  = [ul(x + ilr) uI(x) + u2(x + i,r) u2(x)]/i& 

g(r) = [ul(x + i2r )  ul(x) + u2(x + ilr) u,(x)l/~, 

Figures 9-1 1 showf, g and x for separations of up to one-half the computational 
area dimension, averaged over all space and over the 200 time steps of each 
experiment for which the spectral plots are exhibited. Because of the periodicity 
of the computational area the correlations for larger separation distances are 
simply mirror images of those shown. In  isotropic turbulence the above functions 
are expected to be related by 

9 = (rf’)’, (40) 

z = ~-~[r(f+g)’]’/8f’’(O). (41) 
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Rough comparisons (not shown here) indicate that the above relations are 
reasonably well satisfied by OW computed correlation functions except at the 
larger separations, where the functions are obviously not well determined by 
the present computations. The longitudinal integral scale, sf(.) dr, averages to 
about 1.2. This may be compared to the macro-scale L used for calculating the 
Reynolds number, which has an average value for the last 200 steps of the three 
experiments near 0.95. 

0 2 4 6 8 10 20 30 

Separation 

FIGURE 9. The longitudinal velocity correlation,f(r), for all three experiments as a 
function of separation distance r ,  averaged between the 1000th and 1200th time steps. 

6. Deviations from Gaussianity 
Figures 12 and 13 show the stream function and vorticity at  the 1000th time 

step for the lowest Reynolds number case. The stream function is dominated by 
the large scale components. The vorticity field, however, shows much small scale 
structure, which is consistent with the fact that equal amounts of enstrophy are 
contributed by each octave of a k3 energy spectrum function. From figure 13 
one gains an impression of considerable intermittency in the field of vorticity and 
its gradient. An objective measure of the intermittency of a field is given by its 
deviation from Gaussianity . We have therefore computed the variance, skewness 
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Vorticity correlation function 

Transverse velocity correlation function 
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and flatness factor of the velocity, vorticity and vorticity gradient fields for the 
three simulation experiments as a function of time. 

Figure 14 shows the time record of the flatness factor of ul, uz, 5, aC/axl, and 
a</ax2 for the low Reynolds number case. The flatness factor of a field f(x, t )  is 

Y 

FIGURE 12. Stream function at the 1000th time step for the low Reynolds 
number experiment. 

here defined asf4/f2a and is known to equal 3 for a Gaussian field. From figure 14 
we see that the initial velocity fields appear Gaussian, but as the decay spectrum 
develops they exhibit a slight sub-Gaussian flatness. On the other hand the 
flatness factors for the vorticity and vorticity gradient fields become greater 
than 3. The reduced value for the velocity field flatness can probably be explained 
by the tendency of the stream function to approach a single sinusoidal mode, for 
which the velocity field flatness can be shown to lie between 1.5 and 2.25, 
depending on its isotropy. The flatness factor for the vorticity gradients is quite 
large and indicates a strong tendency for intermittency to develop in the en- 
strophy dissipation field. The flatness factors of u1 and u2 and for the x1 and x2 
derivatives of vorticity are presumably random, although they tend to be rather 
persistent. Similarly the skewness values which have been computed (but not 
shown here) for the various fields all appear to oscillate around zero, but with 
considerable persistence in their deviations. 
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The results for the higher Reynolds number experiments differ significantly 
from those illustrated in figure 14 in that the flatness factor of the vorticity 
gradient field is substantially less, and in fact is smaller than that of the vorticity. 

X 

FIGURE 13. Vorticity a t  the 1000th time step for the low Reynolds number experiment. 

This result is apparently spurious, due to the truncation error introduced by 
computing these gradients from finite difference approximations. We conclude 
that the numerical resolution used here is insufficient to allow for definitive 
measurements of these statistical properties when the Reynolds number is large 
enough for a well defined k-3 spectrum region to exist. 

7. Conclusions 
The work described in this paper tends to confirm, for the most part, the recent 

theoretical studies of two-dimensional turbulence, a t  least to the extent that 
they agree with each other. In  two-dimensional flow, a ‘cascade’ of enstrophy 
occurs through the smaller scales of motion and forms an enstrophy inertial 
range, characterized by a scalar energy spectrum proportional to k3 or steeper. 
In  several respects the enstrophy cascade and inertial range are analogous to 
those of energy in three dimensions, but there are notable differences. In  the early 
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stages of development of turbulent flow from Gaussian initial cond.itions, a vorti- 
city gradient is generated by self-distortion of the flow. We may compare this 
process with the vortex stretching which produces vorticity and turbulence in 
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FIGURE 14. Flatness factors of the fields of ul, u2, 6, a@z, and a</:/az, as 
functions of time for the low Reynolds number experiment. 

three dimensions. In  both cases the quasi-normality assumption leads to a 
prediction that is probably valid for a limited period of time. The prediction for 
the three-dimensional case is (Proudman & Reid 1954) simply that 

d2(oz)/dt2 = + ( i 3 ) 2 ,  (42) 
where w is the vorticity amplitude. Equation (18), the comparable result for 
two-dimensional flow, is somewhat more complex, however, presumably due to 
the additional constraints on non-linear interactions in two dimensions. 

The power-law prediction for the energy spectrum and the presumed universal 
constant are somewhat shakier concepts in two-dimensional than three-dimen- 
sional turbulence, due to the logarithmic divergence of enstrophy as R --f 00 

and to the related non-localness of the spectral interactions. The logarithmic 
correction proposed in (33) appears to be a partial solution to the internal 
inconsistency of the k-3 spectrum but remains purely speculative at this time. 

The deviations from Gaussianity found in the vorticity gradient statistics are 
apparently completely analogous to the non-Gaussianity found in the velocity 
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gradient statistics in three-dimensional turbulence (Stewart, Wilson & Burling 
1970; Gibson, Stegen & Williams 1970). Enstrophy dissipation, like energy 
dissipation in three dimensions, apparently tends toward intermittency, with 
possibly a log-normal distribution function at  high Reynolds numbers. 

One of the most important conclusions of the present work is that numerical 
simulation is now apparently capable of adding to our fundamental understanding 
of turbulent processes at  a reasonable cost. The computations reported here 
consumed only about 10 h of computing time on a CDC 6600, including a number 
of preliminary, irrelevant and additional experiments not mentioned above. 
Problems of a purely numerical nature, such as computational stability, aliasing 
and truncation errors, did occur in some of the earlier experiments but were not 
of sufficient magnitude to seriously interfere with the final results. Significant 
improvements could be obtained at moderate additional cost by integrating the 
spectral equations with the aid of fast Fourier transforms, as outlined by Orszag 
(1969). Such techniques are probably necessary if simulation methods are to be 
applied to the much more formidable problem of three-dimensional turbulence. 

This work could not have been completed without the computer programming 
assistance ably provided by David W. Fulker. Useful comments and encourage- 
ment were received from C. E. Leith, J. W. Deardorff, D. G. Pox and Steven A. 
Orszag. The reviewers, including R. Kraichnan and G. K. Batchelor, added 
extremely useful comments, leading to substantial revisions and improvements 
of the paper. 
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